The Minimum Shared Edges Problem on Grid-Like Graphs

نویسندگان

  • Till Fluschnik
  • Meike Hatzel
  • Steffen Härtlein
  • Hendrik Molter
  • Henning Seidler
چکیده

We study the NP-hard Minimum Shared Edges (MSE) problem on graphs: decide whether it is possible to route p paths from a start vertex to a target vertex in a given graph while using at most k edges more than once. We show that MSE can be decided on bounded grids in linear time when both dimensions are either small or large compared to the number p of paths. On the contrary, we show that MSE remains NP-hard on subgraphs of bounded grids. Finally, we study MSE from a parametrised complexity point of view. It is known that MSE is fixed-parameter tractable with respect to the number p of paths. We show that, under standard complexity-theoretical assumptions, the problem parametrised by the combined parameter k, p, maximum degree, diameter, and treewidth does not admit a polynomial-size problem kernel, even when restricted to planar graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Minimum Shared Edges Problem on Planar Graphs

We study the Minimum Shared Edges problem introduced by Omran et al. [Journal of Combinatorial Optimization, 2015] on planar graphs: Planar MSE asks, given a planar graph G = (V,E), two distinct vertices s, t ∈ V , and two integers p, k ∈ N, whether there are p s-t paths in G that share at most k edges, where an edges is called shared if it appears in at least two of the p s-t paths. We show th...

متن کامل

Edge Disjoint Paths in Moderately Connected Graphs

We study the Edge Disjoint Paths (EDP) problem in undirected graphs: Given a graph G with n nodes and a set T of pairs of terminals, connect as many terminal pairs as possible using paths that are mutually edge disjoint. This leads to a variety of classic NP-complete problems, for which approximability is not well understood. We show a polylogarithmic approximation algorithm for the undirected ...

متن کامل

Simultaneous Orthogonal Planarity

We introduce and study the OrthoSEFE-k problem: Given k planar graphs each with maximum degree 4 and the same vertex set, do they admit an OrthoSEFE, that is, is there an assignment of the vertices to grid points and of the edges to paths on the grid such that the same edges in distinct graphs are assigned the same path and such that the assignment induces a planar orthogonal drawing of each of...

متن کامل

Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity

Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...

متن کامل

The Minimum Vulnerability Problem on Graphs

Suppose that each edge e of an undirected graph G is associated with three nonnegative integers cost(e), vul(e) and cap(e), called the cost, vulnerability and capacity of e, respectively. Then, we consider the problem of finding k paths in G between two prescribed vertices with the minimum total cost; each edge e can be shared without cost by at most vul(e) paths, and can be shared by more than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017